

650V N-Channel Power MOSFET

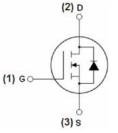
General Description

BCT16N65 uses advanced technology to provide low R_{DS(on)}, low gate charge and fast switching characteristics. This device is suitable for power applications.

Features


Low R_{DS(on)} Low FOM Extremely low switching loss Good stability and uniformity

Applications


Consumer electronics power supply LCD/LED/PDP
Portable digital power management PFC

BV _{DSS}	650	V		
ID	16	Α		
R _{DS(on),typical@10V}	0.49	Ω		
V _{GS(th),typical}	3	V		
Package	TO-220F			

TO-220F

Top View

Schematic Diagram

Ordering Information

Part Number	Package	Form	Minimum Order Quantity
BCT16N65	TO-220F	Tube	1000

Absolute Maximum Ratings (TA=25°C unless otherwise noted)

Parameter	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	650	V
Gate-Source Voltage	V_{GS}	±30	V
Drain Current-Continuous(Note 1)	ID	16	Α
Drain Current-Pulsed ^(Note 2)	Ірм	64	Α
Power Dissipation ^(Note 3)	P _D	70	W
Single Pulsed-Avalanche Energy(Note 4)	Eas	800	mJ
Operation and Storage Junction Temperature	$T_{J,}T_{STG}$	-55 to 150	°C

Thermal Characteristics

Parameter	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case	R ₀ JC	1.79	°C/W
Thermal Resistance, Junction-to-Ambient (Note 5)	Reja	62	°C/W

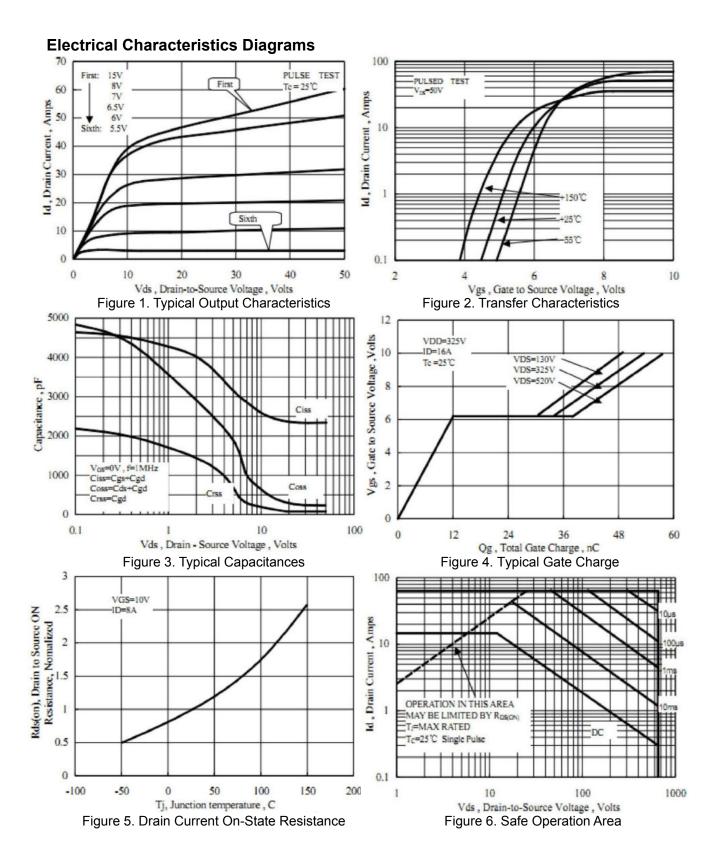
Electrical Characteristics (T_A=25°C unless otherwise noted)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test condition
Drain-Source Breakdown Voltage	BV _{DSS}	650			V	$V_{GS} = 0V, I_D = 250\mu A$
Gate Threshold Voltage	$V_{\text{GS(th)}}$	2	3	4	V	$V_{DS} = V_{GS}, I_D = 250 \mu A$
Drain-Source On-State Resistance	R _{DS(on)}		0.49	0.55	Ω	$V_{GS} = 10V, I_D = 8A$
Gate-Source Leakage Current	I _{GSS}			100	nA	V _{GS} = 30V
				-100	nA	V _{GS} = -30V
Drain-Source Leakage Current	I _{DSS}			1	μΑ	V _{DS} = 650V,V _{GS} = 0V

Dynamic Characteristics

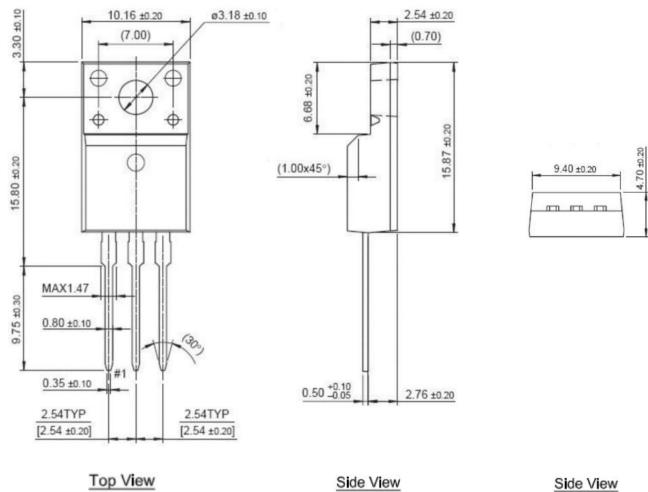
Input Capacitance	Ciss	2	540	pF	$V_{GS} = 0V$,
Output Capacitance	Coss	2	18	pF	$V_{DS} = 25V$,
Reverse Transfer Capacitance	Crss		18	pF	f = 1MHz
Turn-On Delay Time	t _{d(on)}	;	30	ns	I _D = 8A,
Turn-On Rise Time	t _r		70	ns	V _{GS} = 10V,
Turn-Off Delay Time	t _{d(off)}	1	45	ns	$V_{DS} = 325V$,
Turn-Off Fall Time	t _f		74	ns	$R_G = 3\Omega$

Gate Charge Characteristics


Total Gate Charge	Qg	54	nC	I _D = 8A,
Gate-Source Charge	Q_{gs}	10	nC	V _{DS} = 325V,
Gate-Drain Charge	Q_{gd}	21	nC	V _{GS} = 10V

Body Diode Characteristics

Body Diode Forward Current	Is		16	Α	$V_{GS} < V_{th}$
Diode Forward Voltage	V _{SD}		1.5	V	I _S =16A, V _{GS} = 0V
Reverse Recovery Time	t _{rr}	410		ns	I _S = 16A, V _{GS} = 0V
Reverse Recovery Charge	Qrr	3.5		μC	di/dt = 100A/µs


Notes

- 1. Calculated continuous current based on maximum allowable junction temperature.
- 2. Repetitive rating, pulse width limited by maximum junction temperature.
- 3. P_D is based on maximum junction temperature, using junction-to-case thermal resistance.
- 4. V_{DD} = 50V, R_G = 25 Ω , L = 10mH, Starting T_J = 25 $^{\circ}$ C.
- 5. The value of $R_{\theta JA}$ is measured with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C.

Package Outline Dimensions

Package	Units/Tube	Tubes/Inner Box	Units/Inner Box	Inner Box/Carton Box	Units/Carton Box
TO-220F	50	20	1000	5	5000