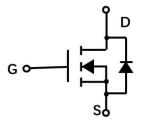


Silicon N-Channel MOSFET

Features

- 100V, 68A
- $R_{DS(ON)} = 9.5m\Omega$ (Max.) @ $V_{GS} = 10V$, $I_D = 20A$
- Low R_{DS(on)} & FOM
- Extremely low switching loss
- · Excellent stability and uniformity
- 100% UIS tested , 100% \triangle VDS Tested
- RoHS and Halogen-Free Compliant

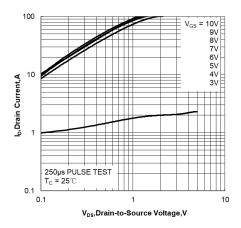

Package

TO-220F

Application

- High Frequency Switching
- Synchronous Rectification

Symbol	Parameter		Max.	Units
V _{DSS}	Drain-Source Voltage		100	V
V _{GSS}	Gate-Source Voltage		± 20	V
I _D	Continuous Drain Current note5	T _C = 25°C	68	А
ID	Continuous Drain Current note5	T _C = 100°C	42.5	А
I _{DM}	Pulsed Drain Current note3		268	А
P _D	Power Dissipation note2	T _C = 25°C	78	W
I _{AS}	Avalanche Current note3,6		18	А
Eas	Single Pulse Avalanche Energy note3,6		81	mJ
Rejc	Thermal Resistance, Junction to Case		1.6	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient note1,4		50	°C/W
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	$^{\circ}$


Electrical Characteristics Tc=25°C unless otherwise specified

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
Off Charact	eristic			•	•	
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} = 0V, I _D = 250µA	100	-	-	V
I _{DSS}	Drain-Source Leakage Current	V _{DS} = 80V, V _{GS} = 0V	-	-	1	μΑ
Igss	Gate to Body Leakage Current	V _{DS} = 0V, V _{GS} = ±20V	-	-	±100	nA
On Charact	eristics					
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	1.2	1.8	2.6	V
R _{DS(on)}	Static Drain-Source On-Resistance	V _{GS} = 10V, I _D = 20A	-	8.2	9.5	mΩ
		V _{GS} = 4.5V, I _D = 10A	-	11.3	13.5	mΩ
g fs	Forward Threshold Voltage	V _{DS} = 5V, I _D = 20A	-	15.9	-	S
R _g	Gate Resistance	$V_{DS} = V_{GS} = 0V$, $f = 1.0MHz$	-	1.62	-	Ω
Dynamic Cl	naracteristics	,		•	•	
Ciss	Input Capacitance	., 50,/.)/	-	2018	-	pF
Coss	Output Capacitance	V _{DS} = 50V, V _{GS} = 0V, f = 1.0MHz	-	580	-	pF
Crss	Reverse Transfer Capacitance		-	28	-	pF
Switching C	Characteristics					
Qg	Total Gate Charge	V _{DS} = 50V, I _D = 20A, V _{GS} = 10V	-	38.5	-	nC
Qgs	Gate-Source Charge		-	8	-	
Q _{gd}	Gate-Drain("Miller") Charge		-	9	-	
t _{d(on)}	Turn-On Delay Time	$V_{DS} = 50V$, $I_{D} = 20A$, $R_{G} = 3\Omega$, $V_{GS} = 10V$	-	17	-	ns
tr	Turn-On Rise Time		-	4	-	
t _{d(off)}	Turn-Off Delay Time		-	32	-	
t _f	Turn-Off Fall Time		-	8	-	
Diode Char	acteristics					
Is	Continuous Source Current		-	-	68	Α
V _{SD}	Diode Forward Voltage	I _S =20A . V _{GS} = 0V	-	0.88	1.0	V
t _{rr}	Reverse Recovery Time	I _{SD} =20A,	-	50.4	-	ns
Qrr	Reverse Recovery Charge	dl _{SD} /dt=100A/μs	-	68	-	nC

Notes:

- 1. The value of R_{BJC} is measured in a still air environment with TA =25°C and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design.
- 2. The power dissipation P_D is based on $T_{J(MAX)}$ =150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.
- 3. Single pulse width limited by junction temperature $T_{J(MAX)}$ =150°C.
- 4. The $R_{\theta JA}$ is the sum of the thermal impedance from junction to case $R_{\theta JC}$ and case to ambient.
- 5. The maximum current rating is package limited.
- 6. The EAS data shows Max. rating. The test condition is V_{DS} =50V, V_{GS} =10V,L=0.5mH

Typical Performance Characteristics

Figure 1. Output Characteristics

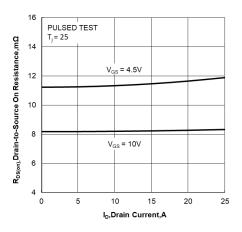


Figure 3. Drain-to-Source On Resistance vs Drain Current

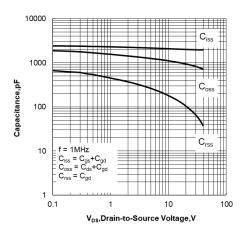


Figure 5. Capacitance Characteristics

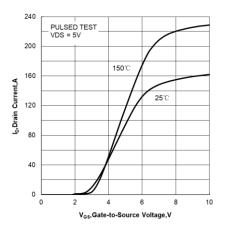


Figure 2. Transfer Characteristics

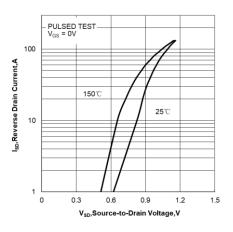


Figure 4. Body Diode Forward Voltage vs Source Current and Temperature

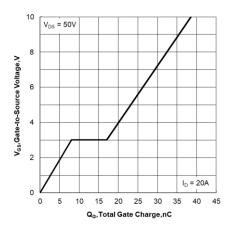


Figure 6. Gate Charge Characteristics

Figure 7. Normalized Breakdown Voltage vs Junction Temperature

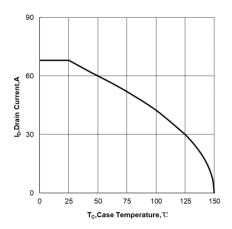


Figure 9. Maximum Continuous Drain Current vs Case Temperature

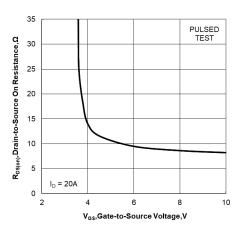


Figure 11. Drain-to-Source On Resistance vs Gate
Voltage and Drain Current

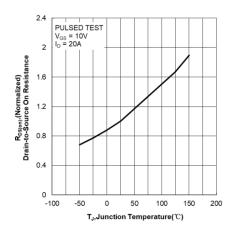


Figure 8. Normalized On Resistance vs

Junction Temperature

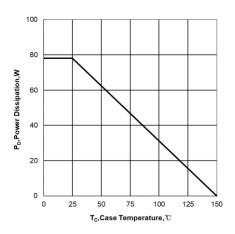


Figure 10. Maximum Power Dissipation vs Case Temperature

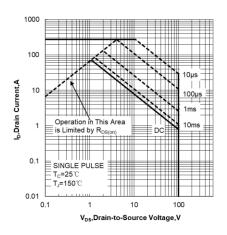


Figure 12. Maximum Safe Operating Area

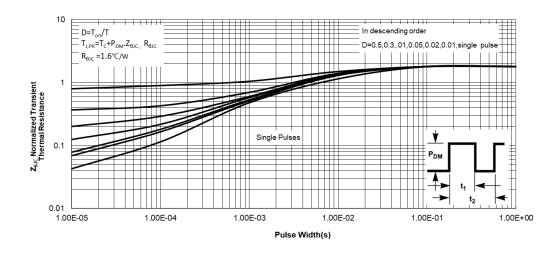


Figure 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case